• Главная
  • ЛЕНТА НОВОСТЕЙ
  • АРХИВ НОВОСТЕЙ
  • Политическая жизнь Армении
  • Украинско-армянские отношения
  • Культура и искусство Армении
  • RSS feed
  • Чудеса света


    Метаматериалы

    Физики все активнее работают над созданием материалов, которые преломляют свет наоборот, что, возможно, позволит сделать материальные объекты невидимыми или создать объективы, обеспечивающие сверхчеткую видимость.

    Ученые научились манипулировать светом при помощи структур, которые они называют «метаматериалами», коэффициент отражения которых может быть не только меньше единицы, но и отрицательным, меньше нуля. Войдя в такой материал, свет резко развернется, словно бы отскочив от невидимого зеркала.

    Ученые Университета Дьюк продемонстрировали в действии «контейнер-невидимку», делающий незримой – правда, только в микроволновом диапазоне – любую вещь, которую кладут внутрь него, напоминает источник.

    Луч микроволнового света расщеплялся надвое. Его половинки огибали специально сконструированный цилиндрический контейнер и почти идеально сливались воедино на другой его стороне. Это означает, что вещь, помещенная в контейнер, практически незрима. Ни одна волна света не отскакивает от нее рикошетом, и человек, который смотрит на цилиндр и его содержимое, увидит лишь то, что находится позади цилиндра.

    Контейнер еще не совершенен. Конкретный материал, из которого изготовлен контейнер, эффективен только для одного конкретного «цвета» или длины волны. Поэтому его практическая полезность крайне ограничена. Создание плаща-невидимки, который был бы эффективен на гораздо более коротких волнах света, зримого невооруженным человеческим глазом, или в широком спектре цветов – это еще более сложная, возможно, даже невыполнимая задача.

    Однако демонстрация показала, что в последнее время ученые научились манипулировать светом при помощи структур, которые они сами называют «метаматериалами».

    Очевидно, военных заинтересует любой материал, который можно было бы использовать для камуфлирования танков и других видов боевой техники. Но такие материалы могут применяться и в микроскопах и антеннах нового типа. Покамест ученые провели необходимые расчеты, смоделировали процессы на компьютере и осуществили ряд экспериментов, доказывающих верность самого принципа, – вроде того, что состоялся в Дьюке. Но им еще предстоит установить практические пределы тому, насколько им удастся подчинить свет своей воле.

    Никакого волшебства в этом методе нет, да и материалы используются не свежеизобретенные. Физики берут самые обыкновенные материалы типа оргстекла и меди и делают из них метаматериалы, похожие с виду на мозаику из плиток с повторяющимся орнаментом. Метаматериалы взаимодействуют с электрическими и магнитными полями световой волны, манипулируя их характеристикой, которая называется коэффициентом отражения, и тем самым преломляя свет так, как неспособен преломлять его ни один природный материал.

    Когда луч света пересекает границу между воздухом и водой, стеклом или другим прозрачным веществом, он преломляется. Угол преломления обусловлен коэффициентом отражения.

    Коэффициент отражения воздуха равен 1, воды – примерно 1,3. Вот почему, глядя сквозь воду, по поверхности которой разбегается рябь, мы видим дно пруда искаженным. Именно из-за отражения соломинка в стакане с водой словно бы выгибается к ее поверхности, а рыбы, плавающие в пруду, кажутся ближе к поверхности воды, чем на самом деле.

    У бриллиантов коэффициент отражения составляет 2,4. Потому-то они так красиво сверкают.

    Если говорить о видимом свете, то прозрачные материалы типа стекла, воды и бриллиантов имеют коэффициенты отражения, равные 1 или выше. То есть, когда свет входит в материал, он движется как бы по вогнутой траектории, близкой к перпендикулярной линии. Поскольку в толще материала коэффициент отражения везде одинаков, преломление происходит лишь в момент, когда свет пересекает границу.

    Но теперь возможно создать метаматериалы с коэффициентами отражения в диапазоне от 0 до 1. У контейнера-невидимки, созданного в Дьюке, коэффициент плавно варьируется от 0 на внутренней поверхности цилиндра до 1 на его внешней поверхности. Поэтому траектория света искривляется не только на границах, но и при прохождении через толщу метаматериала.

    Метаматериалы впервые стали предметом бурных споров ученых несколько лет назад, после поразительного заявления, что коэффициент отражения может быть не только меньше единицы, но также и отрицательным, меньше нуля. Войдя в такой материал, свет резко развернется, словно бы отскочив от невидимого зеркала.

    Коэффициент отражения зависит от реакции материала на электрическое и магнитное поля. Обычно в толще материала электроны движутся таким образом, чтобы свести к минимуму влияние внешнего электрического поля – то есть, создавая противонаправленное внутреннее электрическое поле. Но есть и исключения. В некоторых металлах – например, в серебре – изменчивое электрическое поле индуцирует поле, направленное в том же направлении.

    В 1960-х годах русский физик В. Г. Веселаго осознал, что если было бы возможно найти материал, который будет оказывать противодействие не только электрическим, но и магнитным полям, то у этого материала будет отрицательный коэффициент отражения.

    В конце 1990-х годов Пендри одним из первых начал изготавливать метаматериалы. Он делал решетки из тонких проволочек, которые реагировали на электрические поля диаметрально противоположным образом по сравнению с большинством материалов. Он также разработал один материал, который реагировал таким образом на магнитные поля.

    Смит, работавший тогда в Калифорнийском университете в Сан-Диего, услышал доклад Пендри на одной научной конференции в 1999 году. Смит и его коллеги изготовили первый метаматериал, реагировавший должным образом на электрические и магнитные поля сразу.

    После публикации несколько лет длились споры между исследователями, которые изготавливали и испытывали метаматериалы с отрицательным отражением, и теми, кто говорил, что эксперименты ничего подобного не доказывают, что отрицательное отражение в лучшем случае иллюзия, так как оно противоречит законам физики.

    Одна из проблем состояла в том, что эксперименты с отрицательным отражением проводились в микроволновом диапазоне. Разработка метаматериалов для более коротких длин волн и высоких частот типа видимого света – дело гораздо более сложное, так как материалов, прозрачных в высокочастотном диапазоне, не так-то много.

    В этом году ученые из лаборатории Эймса в Айове и Университета Карлсруэ (Германия) сообщили, что создали метаматериал, имеющий отрицательный коэффициент отражения в диапазоне видимого света.

    Но некоторых скептиков это не убедило. Николас Гарсиа из Национального исследовательского совета Испании все еще называет заявления Пендри о явлении отрицательного отражения пропагандой. Но сегодня большинство физиков принимает интерпретацию, основанную на реальности отрицательного отражения.

    Как бы то ни было, спор выявил, что метаматериалы не всесильны. Им свойственна дисперсия – то есть угол отражения чрезвычайно зависит от частоты света. Кроме того, они абсорбируют энергию из проходящего через них светового луча.

    Тем не менее Пендри предложил создать на основе материалов с отрицательным коэффициентом отражения «суперобъектив», поскольку они, в отличие от линз обычных объективов, не подвержены процессу под названием «дифракция» – проще говоря, изображение не расплывается.

    Группа ученых во главе с Сян Чжаном, профессором Калифорнийского университета в Беркли, продемонстрировали, что тонкая плоская серебряная пластина действительно может использоваться для получения сверхчеткого изображения. Удалось различить две тонкие линии, разделенные промежутком шириной в 70 миллиардных долей метра.

    Суперобъектив сможет также передавать детали, которые при рассматривании через обычный оптический прибор теряются. Обычно считают, что свет – это аккуратные волнистые колебания. Но при ближайшем рассмотрении оказывается, что к ним примешаны еще и более сложно устроенные «бесконечно малые» волны.

    Обычно эти волны быстро рассеиваются и остаются незамеченными. Но Пендри рассчитал, что линза с отрицательным коэффициентом отражения будет усиливать бесконечно малые волны, и эксперимент Чжана подтвердил эту гипотезу. Когда-нибудь это позволит создать оптический микроскоп для рассматривания по отдельности столь крохотных биологических образований, как вирусы.

    Теперь главная загвоздка в том, что объект надо помещать в непосредственной близости от объектива, на расстоянии, равном доле длины световой волны.

    Еще одна возможная сфера применения – устройства типа пишущих DVD. Чем тоньше фокусировка, тем больше фильмов можно будет уместить на одном стандартном носителе без потери качества. Возможно, говорит Чжан, на диск размером с современный DVD поместится все собрание Библиотеки Конгресса.

    Параллельно исследователи метаматериалов увлеклись идеей плаща-невидимки. В мае 2006 года Пендри и Смит предложили конструкцию для «сокрытия» микроволн одной-единственной частоты. В октябре лаборатория Смита в Дьюке продемонстрировала действующую модель, хотя и упрощенную и несовершенную. Микроволновую модель Смита нельзя приспособить для диапазона видимого света, так как абсорбция энергии будет слишком велика.

    В этом году Владимир М. Шалаев из Пурдью продемонстрировал конструкцию другого типа, где проблема абсорбции не актуальна. По его словам, она может «скрывать» видимый свет, хотя в каждый отдельный момент – лишь определенной длины волны.

    Шалаев говорит, что надеется создать модель из крохотных стержней, расположенных определенным образом вокруг цилиндра, через несколько лет. Метаматериалы могут быть использованы и в других необычных устройствах. Шалаев предложил создать «анти-невидимку» – материал, который будет задерживать в себе свет определенной длины волны.

    По материалам: "inopressa/nytimes/2007/06/13/16:53:39/invisibility" >Inopressa.


    Читайте также:

    САМОЕ ЧИТАЕМОЕ

    04 янв, 11:15

    22 июл, 23:27

    30 окт, 22:04

    25 сен, 21:14

    04 сен, 18:29

    01 сен, 18:33

    Армянские новости в Украине
    Электронная почта проекта: info@armembassy.com.ua

    Официальный сайт Посольства Армении в Украине находится по другому адресу
    bigmir)net TOP 100

    Яндекс цитирования
    Яндекс.Метрика
    © Армянские новости в Украине. Все права защищены.
    При использовании материалов сайта в печатном или электронном виде активная ссылка на ArmEmbassy.com.ua обязательна. Мнение редакции может не совпадать с мнением автора.